
Texture Mapping

Frame Buffer

• Figure 7.2 shows the OpenGL frame buffer and some of
its constituent parts. When we work with the frame
buffer, we usually work with one constituent buffer at a
time. Thus, we shall use the term buffer in what follows
to mean a particular buffer within the frame buffer. Each
of these buffers is n × m and is k bits deep. However, k
can be different for each buffer. For a color buffer, its k is
determined by how many colors the system can display,
usually 24 for RGB displays and 32 for RGBA displays.

Color Palette

• Framebuffers have traditionally supported a wide variety of color
modes. Due to the expense of memory, most early framebuffers used
1-bit (2-color), 2-bit (4-color), 4-bit (16-color) or 8-bit (256-color)
color depths.

• Here is a typical indexed 256-color image and its own palette

Digital Images

• if we are working with RGB images, we usually represent each of the
color components with 1 byte whose values range from 0 to 255.
Thus, we might declare a 512 × 512 image in our application program
as

• GLubyte myimage[512][512][3];

• or, if we are using a floating-point representation,

• typedef vec3 color3;

• color3 myimage[512][512];

Digital Images

• For example, suppose that we want to create a 512 × 512 image that
consists of an 8 × 8 checkerboard of alternating red and black
squares, such as we might use for a game. The following code will
work:

class mRGB

{

public:

 uchar r,g,b,a;

 mRGB(){r = g = b = 0,a=255;}

};

Digital Images

• nRows=nCols=64;

• pixel = new mRGB[3*nRows*nCols];

• long count=0;

• for(int i=0;i<nRows;i++)

• for(int j=0;j<nCols;j++)

• {

• int c=(((i/8)+(j/8)) %2)*255;

• pixel[count].r=c; //red

• pixel[count].g=c; //green

• pixel[count++].b=0; //blue

• }

Digital Images

Mapping Methods

• Consider, for example, the task of creating a virtual orange by computer.
Our first attempt might be to start with a sphere. Although it might have
the correct overall properties, such as shape and color, it would lack the
fine surface detail of the real orange. If we attempt to add this detail by
adding more polygons to our model, even with hardware capable of
rendering tens of millions of polygons per second, we can still overwhelm
the pipeline. as the implementation renders a surface—be it a polygon or a
curved surface—it generates sets of fragments, each of which corresponds
to a pixel in the frame buffer. Fragments carry color, depth, and other
information that can be used to determine how they contribute to the
pixels to which they correspond. As part of the rasterization process, we
must assign a shade or color to each fragment.

Mapping Methods

• An alternative is not to attempt to build increasingly more complex
models, but rather to build a simple model and to add detail as part
of the rendering process. There are three major techniques:

• Texture mapping

• Bump mapping

• Environment mapping

Texture Mapping

• Texture mapping uses an image (or texture) to influence the color of
a fragment. Textures can be specified using a fixed pattern, such as
the regular patterns often used to fill polygons; by a procedural
texture-generation method; or through a digitized image. In all cases,
we can characterize the resulting image as the mapping of a texture
to a surface, as shown in Figure 7.8, as part of the rendering of the
surface.

Bump Mapping & Environment Mapping

• bump maps distort the normal vectors during the shading process to
make the surface appear to have small variations in shape, such as
the bumps on a real orange.

• Reflection maps, or environment maps, allow us to create images
that have the appearance of reflected materials without our having to
trace reflected rays. In this technique, an image of the environment is
painted onto the surface as that surface is being rendered.

• Color Plate 15 uses a texture map for the surface of the table; Color
Plate 10 uses texture mapping to create a brick pattern.

Example of Texture

Example of Bump Mapping

Example of Environment Mapping

Example of Texture Mapping

Example of Texture Mapping

Texture Mapping

• Textures are patterns. They can range from regular patterns, such as
stripes and checkerboards, to the complex patterns that characterize
natural materials. In the real world, we can distinguish among objects
of similar size and shape by their textures.

Two Dimensional Texture Mapping

• Although there are multiple approaches to texture mapping, all
require a sequence of steps that involve mappings among three or
four different coordinate systems. At various stages in the process, we
shall be working with:

• screen coordinates, where the final image is produced;

• object coordinates, where we describe the objects upon which the
textures will be mapped;

• texture coordinates, which we use to locate positions in the texture;

• and parametric coordinates, which we use to help us define curved
surfaces.

What is a texture map?

• Practical: “A way to slap an image on a model.”

• Better: “A mapping from any function onto a surface in three
dimensions.”

• Most general: “The mapping of any image into multidimensional
space.”

Texture Mapping

Texture Mapping

Two Dimensional Texture Mapping

• In most applications, textures start out as two-dimensional images of
the sorts we introduced in page-12 of this slide. Thus, they might be
formed by application programs or scanned in from a photograph,
but, regardless of their origin, they are eventually brought into
processor memory as arrays. We call the elements of these arrays
texels, or texture elements, rather than pixels to emphasize how they
will be used. However, at this point, we prefer to think of this array as
a continuous rectangular two-dimensional texture pattern T(s, t). The
independent variables s and t are known as texture coordinates. With
no loss of generality, we can scale our texture coordinates to vary
over the interval [0,1].

Two Dimensional Texture Mapping

• A texture map associates a texel with each point on a geometric
object that is itself mapped to screen coordinates for display. If the
object is represented in homogeneous or (x, y, z, w) coordinates, then
there are functions such that

• x = x(s, t),

• y = y(s, t),

• z = z(s, t),

• w = w(s, t).

Two Dimensional Texture Mapping

• One of the difficulties we must confront is that although these
functions exist conceptually, finding them may not be possible in
practice. In addition, we are worried about the inverse problem:
Having been given a point (x, y, z) or (x, y, z , w) on an object, how do
we find the corresponding texture coordinates, or equivalently, how
do we find the “inverse” functions

• s = s(x, y, z , w),

• t = t(x, y, z , w)

• to use to find the texel T(s, t)?

Two Dimensional Texture Mapping

• If we define the geometric object using parametric (u, v) surfaces,
there is an additional mapping function that gives object coordinate
values, (x, y, z) or (x, y, z , w) in terms of u and v.

• we also need the mapping from parametric coordinates (u, v) to
texture coordinates and sometimes the inverse mapping from texture
coordinates to parametric coordinates.

Two Dimensional Texture Mapping

• We also have to consider the projection process that take us from
object coordinates to screen coordinates, going through eye
coordinates, clip coordinates, and window coordinates along the way.
We can abstract this process through a function that takes a texture
coordinate pair (s, t) and tells us where in the color buffer the
corresponding value of T(s, t) will make its contribution to the final
image. Thus, there is a mapping of the form

• 𝑥𝑠 = 𝑥𝑠(s, t),

• 𝑦𝑠 = 𝑦𝑠(s, t)

• into coordinates, where (𝑥𝑠 , 𝑦𝑠) is a location in the color buffer.

Two Dimensional Texture Mapping

• One way to think about texture mapping is in terms of two
concurrent mappings: the first from texture coordinates to parametric
coordinates, and the second from parametric coordinates to object
coordinates. A third mapping takes us from object coordinates to
screen coordinates.

Two Dimensional Texture Mapping

Two Dimensional Texture Mapping

Two Dimensional Texture Mapping

• If we assume that the values of T are RGB color values, we can use
these values either to modify the color of the surface that might have
been determined by a lighting model or to assign a color to the
surface based on only the texture value. This color assignment is
carried out as part of the assignment of fragment colors.

Two Dimensional Texture Mapping

Two Dimensional Texture Mapping

Visualization of texture coordinates

• Texture coordinates linearly interpolated over triangle

Texture mapping

Texture Mapping

Linear Texture Mapping

• Do a direct mapping of a block of texture to a surface patch:

Linear Texture Mapping

• A point p on the surface is a function of two parameters u and v. For each
pair of values, we generate the point:

• 𝑝 𝑢, 𝑣 =

𝑥 (𝑢, 𝑣)
𝑦 (𝑢, 𝑣)
𝑧 (𝑢, 𝑣)

• In Figure 7.12, the patch determined by the corners (smin, tmin) and
(smax, tmax) corresponds to the surface patch with corners (umin, vmin)
and (umax, vmax), then the mapping is

• 𝑢 = 𝑢𝑚𝑖𝑛 +
𝑠 −𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛 ,

• 𝑣 = 𝑣𝑚𝑖𝑛 +
𝑡 −𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛
𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛

Cube Mapping

• “Unwrap” cube and map texture over the cube.

Cylinder Mapping

• Wrap texture along outside of cylinder, not top and bottom

• This stops texture from being distorted

Cylinder Mapping

• in Figure 7.13. Points on the cylinder are given by the parametric
equations

• x = r cos(2πu),

• y = r sin(2πu),

• z = v/h,

• as u and v vary over (0,1). Hence, we can use the mapping

• s = u,

• t = v.

Two-part Mapping

• To simplify the problem of mapping from an image to an arbitrary
model, use an object we already have a map for as an intermediary!

• Texture -> Intermediate object -> Final model

• Common intermediate objects:

• Cylinder

• Cube

• Sphere

Intermediate Object to Model

• This step can be done in many ways:

• Normal from intermediate surface

• Normal from object surface

• Use center of object

Difficulties in Texture Mapping

• First, we must determine the map from texture coordinates to object
coordinates. A two-dimensional texture usually is defined over a
rectangular region in texture space. The mapping from this rectangle
to an arbitrary region in three-dimensional space may be a complex
function or may have undesirable properties. For example, if we wish
to map a rectangle to a sphere, we cannot do so without distortion of
shapes and distances.

• Second, owing to the nature of the rendering process, which works
on a pixel-by-pixel basis, we are more interested in the inverse map
from screen coordinates to texture coordinates.

Difficulties in Texture Mapping

• Third, because each pixel corresponds to a small rectangle on the
display, we are interested in mapping not points to points, but rather
areas to areas. Here again is a potential aliasing problem that we
must treat carefully if we are to avoid artifacts, such as wavy
sinusoidal or moire’ patterns.

What is aliasing?

• An on-screen pixel does not always map neatly to a texel. Particularly
severe problems in regular textures.

Aliasing

Moire Pattern

Anti-Aliasing

• Pre-calculate how the texture should look at various distances, then
use the appropriate texture at each distance. This is called
mipmapping.

Texture magnification

• a pixel in texture image ('texel') maps to an area larger than one pixel
in image

Texture minification

• a pixel in texture image('texel') maps to an area smaller than a pixel in
image:

Mipmapping

Anti-Aliasing

• Another approach: Filtering-
1. Bi Linear Filtering
2. Tri Linear Filtering
3. Anisotropic Filtering

Aliasing and Anti-aliasing

OpenGL Texture Mapping

• OpenGL’s texture maps rely on its pipeline architecture. We have seen
that there are actually two parallel pipelines: the geometric pipeline
and the pixel pipeline. For texture mapping, the pixel pipeline merges
with fragment processing after rasterization, as shown in Figure 7.16.
This architecture determines the type of texture mapping that is
supported. In particular, texture mapping is done as part of fragment
processing. Each fragment that is generated is then tested for visibility
with the z-buffer. We can think of texture mapping as a part of the
shading process, but a part that is done on a fragment-by-fragment
basis.

Texture Mapping Pipeline

OpenGL Texture Mapping

• Texture mapping requires interaction among the application program,
the vertex shader, and the fragment shader. There are three basic
steps. First, we must form a texture image and place it in texture
memory on the GPU. Second, we must assign texture coordinates to
each fragment. Finally, we must apply the texture to each fragment.

glBindTexture

• glBindTexture(GL_TEXTURE_2D,textureName);

• GL_TEXTURE_2D: Specify that it is a 2D texture

• textureName: Name of the texture

glTexImage2D

• glTexImage2D(GL_TEXTURE_2D, level, components, width, height,
border, format, type, tarray)

• GL_TEXTURE_2D: Specify that it is a 2D texture

• Level: Used for specifying levels of detail for mipmapping

• Components: Generally is 0 which means GL_RGB, Represents
components and resolution of components

• Width, Height: The size of the texture must be powers of 2

• Border Format: Specify what the data is (GL_RGB, GL_RGBA, …)

• Type: Specify data type (GL_UNSIGNED_BYTE, GL_BYTE, …)

glTexParameteri

• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
• This function sets several texture mapping parameters. These parameters

are bound to the current texture state that can be made current with
glBindTexture.

• parameters:
• P1: GLenum: The texture target for which this parameter applies. Must be

one of GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or
GL_TEXTURE_CUBE_MAP.

• P2: GLenum: The texturing parameter to set. GL_TEXTURE_MAG_FILTER
Returns the texture magnification filter value

• P3: GLfloat or GLfloat* or GLint or GLint*: Value of the parameter specified
by pname.

GL_REPEAT Instead of GL_LINEAR

GL_CLAMP

GL_NEAREST

GL_LINEAR

glTexGen

• void glTexGeni(GLenum coord, GLenum pname, GLint param);

• glTexGen selects a texture-coordinate generation function or supplies
coefficients for one of the functions. coord names one of the (s, t, r, q)
texture coordinates; it must be one of the symbols GL_S, GL_T, GL_R,
or GL_Q.

• Coord: Specifies a texture coordinate. Must be one of GL_S, GL_T,
GL_R, or GL_Q.

• Pname: Specifies the symbolic name of the texture-coordinate
generation function or function parameters. Must be
GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE.

glTexGen

• Params: Specifies a pointer to an array of texture generation
parameters. If pname is GL_TEXTURE_GEN_MODE, then the array
must contain a single symbolic constant, one of GL_OBJECT_LINEAR,
GL_EYE_LINEAR, GL_SPHERE_MAP, GL_NORMAL_MAP, or
GL_REFLECTION_MAP. Otherwise, params holds the coefficients for
the texture-coordinate generation function specified by pname.

	Slide 1: Texture Mapping
	Slide 2: Frame Buffer
	Slide 3: Color Palette
	Slide 4: Digital Images
	Slide 5: Digital Images
	Slide 6: Digital Images
	Slide 7: Digital Images
	Slide 8: Mapping Methods
	Slide 9: Mapping Methods
	Slide 10: Texture Mapping
	Slide 11: Bump Mapping & Environment Mapping
	Slide 12: Example of Texture
	Slide 13: Example of Bump Mapping
	Slide 14: Example of Environment Mapping
	Slide 15: Example of Texture Mapping
	Slide 16: Example of Texture Mapping
	Slide 17: Texture Mapping
	Slide 18: Two Dimensional Texture Mapping
	Slide 19: What is a texture map?
	Slide 20: Texture Mapping
	Slide 21: Texture Mapping
	Slide 22: Two Dimensional Texture Mapping
	Slide 23: Two Dimensional Texture Mapping
	Slide 24: Two Dimensional Texture Mapping
	Slide 25: Two Dimensional Texture Mapping
	Slide 26: Two Dimensional Texture Mapping
	Slide 27: Two Dimensional Texture Mapping
	Slide 28: Two Dimensional Texture Mapping
	Slide 29: Two Dimensional Texture Mapping
	Slide 30: Two Dimensional Texture Mapping
	Slide 31: Two Dimensional Texture Mapping
	Slide 32: Two Dimensional Texture Mapping
	Slide 33: Visualization of texture coordinates
	Slide 34: Texture mapping
	Slide 35: Texture Mapping
	Slide 36: Linear Texture Mapping
	Slide 37: Linear Texture Mapping
	Slide 38: Cube Mapping
	Slide 39: Cylinder Mapping
	Slide 40: Cylinder Mapping
	Slide 41: Two-part Mapping
	Slide 42: Intermediate Object to Model
	Slide 43: Difficulties in Texture Mapping
	Slide 44: Difficulties in Texture Mapping
	Slide 45: What is aliasing?
	Slide 46: Aliasing
	Slide 47: Moire Pattern
	Slide 48: Anti-Aliasing
	Slide 49: Texture magnification
	Slide 50: Texture minification
	Slide 51: Mipmapping
	Slide 52: Anti-Aliasing
	Slide 53: Aliasing and Anti-aliasing
	Slide 54: OpenGL Texture Mapping
	Slide 55: Texture Mapping Pipeline
	Slide 56: OpenGL Texture Mapping
	Slide 57: glBindTexture
	Slide 58: glTexImage2D
	Slide 59: glTexParameteri
	Slide 60: GL_REPEAT Instead of GL_LINEAR
	Slide 61: GL_CLAMP
	Slide 62: GL_NEAREST
	Slide 63: GL_LINEAR
	Slide 64: glTexGen
	Slide 65: glTexGen

