
Texture Mapping



Frame Buffer

• Figure 7.2 shows the OpenGL frame buffer and some of 
its constituent parts. When we work with the frame 
buffer, we usually work with one constituent buffer at a 
time. Thus, we shall use the term buffer in what follows 
to mean a particular buffer within the frame buffer. Each 
of these buffers is n × m and is k bits deep. However, k 
can be different for each buffer. For a color buffer, its k is 
determined by how many colors the system can display, 
usually 24 for RGB displays and 32 for RGBA displays.



Color Palette

• Framebuffers have traditionally supported a wide variety of color 
modes. Due to the expense of memory, most early framebuffers used 
1-bit (2-color), 2-bit (4-color), 4-bit (16-color) or 8-bit (256-color) 
color depths. 

• Here is a typical indexed 256-color image and its own palette



Digital Images

• if we are working with RGB images, we usually represent each of the 
color components with 1 byte whose values range from 0 to 255. 
Thus, we might declare a 512 × 512 image in our application program 
as

• GLubyte myimage[512][512][3];

• or, if we are using a floating-point representation,

• typedef vec3 color3;

• color3 myimage[512][512];



Digital Images

• For example, suppose that we want to create a 512 × 512 image that 
consists of an 8 × 8 checkerboard of alternating red and black 
squares, such as we might use for a game. The following code will 
work:

class mRGB

{

public:

 uchar r,g,b,a;

 mRGB(){r = g = b = 0,a=255;}

};



Digital Images

• nRows=nCols=64;

• pixel = new mRGB[3*nRows*nCols];

• long count=0;

• for(int i=0;i<nRows;i++)

•  for(int j=0;j<nCols;j++)

•  {

•   int c=(( (i/8)+(j/8) ) %2)*255;

•   pixel[count].r=c; //red

•   pixel[count].g=c; //green

•   pixel[count++].b=0; //blue

•  }



Digital Images



Mapping Methods

• Consider, for example, the task of creating a virtual orange by computer. 
Our first attempt might be to start with a sphere. Although it might have 
the correct overall properties, such as shape and color, it would lack the 
fine surface detail of the real orange. If we attempt to add this detail by 
adding more polygons to our model, even with hardware capable of 
rendering tens of millions of polygons per second, we can still overwhelm 
the pipeline. as the implementation renders a surface—be it a polygon or a 
curved surface—it generates sets of fragments, each of which corresponds 
to a pixel in the frame buffer. Fragments carry color, depth, and other 
information that can be used to determine how they contribute to the 
pixels to which they correspond. As part of the rasterization process, we 
must assign a shade or color to each fragment.



Mapping Methods

• An alternative is not to attempt to build increasingly more complex 
models, but rather to build a simple model and to add detail as part 
of the rendering process. There are three major techniques:

• Texture mapping

• Bump mapping

• Environment mapping



Texture Mapping

• Texture mapping uses an image (or texture) to influence the color of 
a fragment. Textures can be specified using a fixed pattern, such as 
the regular patterns often used to fill polygons; by a procedural 
texture-generation method; or through a digitized image. In all cases, 
we can characterize the resulting image as the mapping of a texture 
to a surface, as shown in Figure 7.8, as part of the rendering of the 
surface.



Bump Mapping & Environment Mapping

• bump maps distort the normal vectors during the shading process to 
make the surface appear to have small variations in shape, such as 
the bumps on a real orange.

• Reflection maps, or environment maps, allow us to create images 
that have the appearance of reflected materials without our having to 
trace reflected rays. In this technique, an image of the environment is 
painted onto the surface as that surface is being rendered.

• Color Plate 15 uses a texture map for the surface of the table; Color 
Plate 10 uses texture mapping to create a brick pattern.



Example of Texture



Example of Bump Mapping



Example of Environment Mapping



Example of Texture Mapping



Example of Texture Mapping



Texture Mapping

• Textures are patterns. They can range from regular patterns, such as 
stripes and checkerboards, to the complex patterns that characterize 
natural materials. In the real world, we can distinguish among objects 
of similar size and shape by their textures.



Two Dimensional Texture Mapping

• Although there are multiple approaches to texture mapping, all 
require a sequence of steps that involve mappings among three or 
four different coordinate systems. At various stages in the process, we 
shall be working with:

• screen coordinates, where the final image is produced; 

• object coordinates, where we describe the objects upon which the 
textures will be mapped; 

• texture coordinates, which we use to locate positions in the texture; 

• and parametric coordinates, which we use to help us define curved 
surfaces.



What is a texture map?

• Practical: “A way to slap an image on a model.”

• Better: “A mapping from any function onto a surface in three 
dimensions.”

• Most general: “The mapping of any image into multidimensional 
space.”



Texture Mapping



Texture Mapping



Two Dimensional Texture Mapping

• In most applications, textures start out as two-dimensional images of 
the sorts we introduced in page-12 of this slide. Thus, they might be 
formed by application programs or scanned in from a photograph, 
but, regardless of their origin, they are eventually brought into 
processor memory as arrays. We call the elements of these arrays 
texels, or texture elements, rather than pixels to emphasize how they 
will be used. However, at this point, we prefer to think of this array as 
a continuous rectangular two-dimensional texture pattern T(s, t). The 
independent variables s and t are known as texture coordinates. With 
no loss of generality, we can scale our texture coordinates to vary 
over the interval [0,1].



Two Dimensional Texture Mapping

• A texture map associates a texel with each point on a geometric 
object that is itself mapped to screen coordinates for display. If the 
object is represented in homogeneous or (x, y, z, w) coordinates, then 
there are functions such that

• x = x(s, t),

• y = y(s, t),

• z = z(s, t),

• w = w(s, t).



Two Dimensional Texture Mapping

• One of the difficulties we must confront is that although these 
functions exist conceptually, finding them may not be possible in 
practice. In addition, we are worried about the inverse problem: 
Having been given a point (x, y, z) or (x, y, z , w) on an object, how do 
we find the corresponding texture coordinates, or equivalently, how 
do we find the “inverse” functions

• s = s(x, y, z , w),

• t = t(x, y, z , w)

• to use to find the texel T(s, t)?



Two Dimensional Texture Mapping

• If we define the geometric object using parametric (u, v) surfaces, 
there is an additional mapping function that gives object coordinate 
values, (x, y, z) or (x, y, z , w) in terms of u and v.

• we also need the mapping from parametric coordinates (u, v) to 
texture coordinates and sometimes the inverse mapping from texture 
coordinates to parametric coordinates.



Two Dimensional Texture Mapping

• We also have to consider the projection process that take us from 
object coordinates to screen coordinates, going through eye 
coordinates, clip coordinates, and window coordinates along the way. 
We can abstract this process through a function that takes a texture 
coordinate pair (s, t) and tells us where in the color buffer the 
corresponding value of T(s, t) will make its contribution to the final 
image. Thus, there is a mapping of the form

• 𝑥𝑠 = 𝑥𝑠(s, t),

• 𝑦𝑠 = 𝑦𝑠(s, t)

• into coordinates, where (𝑥𝑠 , 𝑦𝑠) is a location in the color buffer.



Two Dimensional Texture Mapping

• One way to think about texture mapping is in terms of two 
concurrent mappings: the first from texture coordinates to parametric 
coordinates, and the second from parametric coordinates to object 
coordinates. A third mapping takes us from object coordinates to 
screen coordinates.



Two Dimensional Texture Mapping



Two Dimensional Texture Mapping



Two Dimensional Texture Mapping

• If we assume that the values of T are RGB color values, we can use 
these values either to modify the color of the surface that might have 
been determined by a lighting model or to assign a color to the 
surface based on only the texture value. This color assignment is 
carried out as part of the assignment of fragment colors.



Two Dimensional Texture Mapping



Two Dimensional Texture Mapping



Visualization of texture coordinates

• Texture coordinates linearly interpolated over triangle



Texture mapping



Texture Mapping



Linear Texture Mapping

• Do a direct mapping of a block of texture to a surface patch:



Linear Texture Mapping

• A point p on the surface is a function of two parameters u and v. For each 
pair of values, we generate the point:

• 𝑝 𝑢, 𝑣 =

𝑥 (𝑢, 𝑣)
𝑦 (𝑢, 𝑣)
𝑧 (𝑢, 𝑣)

• In Figure 7.12, the patch determined by the corners (smin, tmin) and 
(smax, tmax) corresponds to the surface patch with corners (umin, vmin) 
and (umax, vmax), then the mapping is

• 𝑢 = 𝑢𝑚𝑖𝑛 +
𝑠 −𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛
𝑢𝑚𝑎𝑥  −  𝑢𝑚𝑖𝑛 ,

• 𝑣 = 𝑣𝑚𝑖𝑛 +
𝑡 −𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛
𝑣𝑚𝑎𝑥  − 𝑣𝑚𝑖𝑛



Cube Mapping

• “Unwrap” cube and map texture over the cube.



Cylinder Mapping

• Wrap texture along outside of cylinder, not top and bottom

• This stops texture from being distorted



Cylinder Mapping

• in Figure 7.13. Points on the cylinder are given by the parametric 
equations

• x = r cos(2πu),

• y = r sin(2πu),

• z = v/h,

• as u and v vary over (0,1). Hence, we can use the mapping

• s = u,

• t = v.



Two-part Mapping

• To simplify the problem of mapping from an image to an arbitrary 
model, use an object we already have a map for as an intermediary!

• Texture -> Intermediate object -> Final model

• Common intermediate objects:

• Cylinder

• Cube

• Sphere



Intermediate Object to Model

• This step can be done in many ways:

• Normal from intermediate surface

• Normal from object surface

• Use center of object



Difficulties in Texture Mapping

• First, we must determine the map from texture coordinates to object 
coordinates. A two-dimensional texture usually is defined over a 
rectangular region in texture space. The mapping from this rectangle 
to an arbitrary region in three-dimensional space may be a complex 
function or may have undesirable properties. For example, if we wish 
to map a rectangle to a sphere, we cannot do so without distortion of 
shapes and distances.

• Second, owing to the nature of the rendering process, which works 
on a pixel-by-pixel basis, we are more interested in the inverse map 
from screen coordinates to texture coordinates.



Difficulties in Texture Mapping

• Third, because each pixel corresponds to a small rectangle on the 
display, we are interested in mapping not points to points, but rather 
areas to areas. Here again is a potential aliasing problem that we 
must treat carefully if we are to avoid artifacts, such as wavy 
sinusoidal or moire’ patterns.



What is aliasing?

• An on-screen pixel does not always map neatly to a texel. Particularly 
severe problems in regular textures.



Aliasing



Moire Pattern



Anti-Aliasing

• Pre-calculate how the texture should look at various distances, then 
use the appropriate texture at each distance. This is called 
mipmapping.



Texture magnification

• a pixel in texture image ('texel') maps to an area larger than one pixel 
in image



Texture minification

• a pixel in texture image('texel') maps to an area smaller than a pixel in 
image:



Mipmapping



Anti-Aliasing

• Another approach: Filtering-
1. Bi Linear Filtering
2. Tri Linear Filtering
3. Anisotropic Filtering



Aliasing and Anti-aliasing



OpenGL Texture Mapping

• OpenGL’s texture maps rely on its pipeline architecture. We have seen 
that there are actually two parallel pipelines: the geometric pipeline 
and the pixel pipeline. For texture mapping, the pixel pipeline merges 
with fragment processing after rasterization, as shown in Figure 7.16. 
This architecture determines the type of texture mapping that is 
supported. In particular, texture mapping is done as part of fragment 
processing. Each fragment that is generated is then tested for visibility 
with the z-buffer. We can think of texture mapping as a part of the 
shading process, but a part that is done on a fragment-by-fragment 
basis.



Texture Mapping Pipeline



OpenGL Texture Mapping

• Texture mapping requires interaction among the application program, 
the vertex shader, and the fragment shader. There are three basic 
steps. First, we must form a texture image and place it in texture 
memory on the GPU. Second, we must assign texture coordinates to 
each fragment. Finally, we must apply the texture to each fragment.



glBindTexture

• glBindTexture(GL_TEXTURE_2D,textureName);

• GL_TEXTURE_2D:  Specify that it is a 2D texture

• textureName: Name of the texture



glTexImage2D

• glTexImage2D(GL_TEXTURE_2D, level, components, width, height, 
border, format, type, tarray)

• GL_TEXTURE_2D:  Specify that it is a 2D texture

• Level: Used for specifying levels of detail for mipmapping

• Components: Generally is 0 which means GL_RGB, Represents 
components and resolution of components

• Width, Height: The size of the texture must be powers of 2

• Border Format:  Specify what the data is (GL_RGB, GL_RGBA, …)

• Type: Specify data type (GL_UNSIGNED_BYTE, GL_BYTE, …)



glTexParameteri

• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
• This function sets several texture mapping parameters. These parameters 

are bound to the current texture state that can be made current with 
glBindTexture.

• parameters:
• P1: GLenum: The texture target for which this parameter applies. Must be 

one of GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or 
GL_TEXTURE_CUBE_MAP.

• P2: GLenum: The texturing parameter to set. GL_TEXTURE_MAG_FILTER  
Returns the texture magnification filter value

• P3: GLfloat or GLfloat* or GLint or GLint*: Value of the parameter specified 
by pname.



GL_REPEAT Instead of GL_LINEAR



GL_CLAMP



GL_NEAREST



GL_LINEAR



glTexGen

• void glTexGeni( GLenum coord, GLenum pname, GLint param);

• glTexGen selects a texture-coordinate generation function or supplies 
coefficients for one of the functions. coord names one of the (s, t, r, q) 
texture coordinates; it must be one of the symbols GL_S, GL_T, GL_R, 
or GL_Q.

• Coord: Specifies a texture coordinate. Must be one of GL_S, GL_T, 
GL_R, or GL_Q.

• Pname: Specifies the symbolic name of the texture-coordinate 
generation function or function parameters. Must be 
GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE.



glTexGen

• Params: Specifies a pointer to an array of texture generation 
parameters. If pname is GL_TEXTURE_GEN_MODE, then the array 
must contain a single symbolic constant, one of GL_OBJECT_LINEAR, 
GL_EYE_LINEAR, GL_SPHERE_MAP, GL_NORMAL_MAP, or 
GL_REFLECTION_MAP. Otherwise, params holds the coefficients for 
the texture-coordinate generation function specified by pname.
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